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Dynamic e!ects of the support structure are important in vibration analyses of a rotor. It
may well happen in real machines such as centrifugal pumps or turbines operating on
a #exible structure. This paper suggests an improved rotor model for including the support
e!ects e$ciently into the rotor-bearing system. The support FRFs are used to extract the
spring}mass models which have the same dynamic characteristics of the support structure.
These regenerated models are directly inserted into the rotor. On the other hand, the
impedance coupling method, which is often used in structural vibration problems, is
presented to verify the suggested modelling technique. It is based on the FRFs of each
substructure and the constraint conditions of interface co-ordinates. To demonstrate the
applicability and validity of the analytical procedures, they are applied to the rotor of
a double suction centrifugal pump. As a result, they show a good agreement with each other.
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1. INTRODUCTION

A structure of turbomachinery such as a pump and a turbine can be divided into the rotor
and the stator. Many published works are interested in the critical speed, instability, and
vibration behaviors of the rotor due to the mechanical unbalance or the self-excited sources.
These dynamic characteristics of the rotor have been successfully analyzed using the "nite
element method or the transfer matrix method [1}6], and well established theoretically
[7, 8].

But, most of the presented papers ignore the dynamic e!ects of the support structure or
deal with a simple shaft}impeller-bearing system. These cannot represent the dynamic
behaviors of the real system very well, because the rotor vibrations are strongly dependent
upon the dynamic sti!ness and the sti!ness asymmetry of the support structure [9, 10].

In order to perform the dynamic analysis of the complex system e$ciently, several
methods have been widely used in structural vibration problems. One of the most common
techniques is the dynamic sti!ness matrix method [11, 12], which converts the compliance
FRFs to the dynamic sti!ness matrix at discrete frequencies. The transformed matrix is
directly inserted into the global matrix at an appropriate degree of freedom. Yang [13]
presented the characteristic equation of the system in terms of the transfer functions of the
component systems and the transfer functions describing the combined gyroscopic system.
Suarez et al. [14] used a modal synthesis method to calculate the lower eigenproperties of
a general dynamic system divided into subsystems. Taiping [15] presented the transfer
matrix impedance coupling method for calculating the eigensolutions of multi-spool rotor
systems.
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This paper presents the applications of the impedance coupling method and the
improved rotor model. The former is well established and generalized mathematically, and
it is applied to couple some co-ordinates in several substructures. So, its results can be used
to verify the other analytical method. On the other hand, the latter is an e$cient modelling
technique for including the support e!ects into the rotor model. The FRFs of the support
structure are calculated using MSC/NASTRAN by the "nite element method. They are
used to extract the spring}mass models, which have the same dynamic characteristics of the
support structure. These regenerated models are directly inserted into the rotor. To
demonstrate the validity of the analysis procedures provided, they are applied to the rotor
of the double suction centrifugal pump.

2. FREQUENCY RESPONSE FUNCTION AND DESCRIPTION OF THE SYSTEM

2.1. FREQUENCY RESPONSE FUNCTION

Dynamic characteristics of a structural system may be described by several di!erent
models as follows. The spatial model is given by [M], [C], and [K] which can be
constructed through an analytical technique. It leads to an eigenproblem, which yields the
modal model constituted by natural frequencies, damping values, and mode shapes.
Furthermore, the modal model can be reconstructed to establish the response model.

Experimental modal analysis is also a very useful tool in a complex structure. It has been
well known that the modal model can be extracted from the response model. Normally, test
results are represented as transfer functions by means of arti"cial excitation. From the
modal model, the equivalent properties such as mass, sti!ness, and damping matrices can be
estimated.

The equation of motion for a linear and damped structure can be generalized as

[M]MxK (t)N#[C] MxR (t)N#[K]Mx (t)N"M f (t)N , (1)

where [M], [C], and [K] are the mass, damping, and sti!ness matrices of the structure
respectively. M f (t)N is the time-dependent force vector and Mx(t)N is the displacement vector.
The steady state solutions are obtained by assuming that the excitation forces are
M f (t)N"MF (u)N e+ut and the responses also have the same frequency as Mx(t)N"MX(u)N e+ut.

Thus, the dynamic responses are characterized by the following matrix equation:

MX(u)N"([K]!u2[M]#ju[C])~1MF(u)N (2)

or

MX(u)N"[H(u)] MF(u)N, (3)

where

[H(u)]~1"([K]!u2[M]#ju[C]). (4)

In equation (4), premultiply both sides by [U]T and postmultiply both sides by [U]. Then,
by taking the orthogonality properties of the eigenvectors and the inverse relationships, it
may be concluded that

[H(u)]"[U] A
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r
!u2#j2m

r
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}B
~1

[U]T (5)
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where

[U]T[M][U]"[I],
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,

[U]T[C][U]"
}
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r
u
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}

. (7)

The matrix [H(u)] is commonly denoted as a frequency response matrix relating the
input excitations to the output responses. If we are interested in extracting a single element,
i.e., the response at co-ordinate && j 11 due to a single harmonic force at co-ordinate &&k'', this
means that the force vector will have just one non-zero element and therefore we can write
as follows:

H
jk
(u)"

X
j
(u)

F
k
(u)

, F
m
"0 and mOk. (8)

In particular, damping terms can be neglected for undamped or lightly damped
structures. So, the magnitude of typical individual FRF would be expected to have the form
of a ratio of two polynomials as [16]
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(u) D"K
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n
u2n K . (9)

It is clear that the roots in the denominator are natural frequencies of the structure
determined by D[K]!u2[M] D"0, and the roots in the numerator represent frequencies at
anti-resonances. Therefore, equation (9) can also be expressed as follows:
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jk

(u) D"KB
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1
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n~1
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n
!u2) K . (10)

2.2. SUBSTRUCTURE MODELS OF THE PUMP SYSTEM

In order to support later developments, an explanation of each substructure is presented.
Figure 1 shows a "nite element model of the double suction centrifugal pump. A "xed
co-ordinate reference system, with the X-axis coinciding with the undeformed centerline of
the shaft, is used to describe the system con"guration. The speci"cation of the pump is listed
in Table 1.



Figure 1. Finite element model of the double suction centrifugal pump.

TABLE 1

Speci,cation of the double suction centrifugal pump

Double suction, single stage, radially splitted type
Speci"cation centrifugal pump

Pump size (in) 16]14!16
Flow 2500 m3/h

Design condition Head 50 m
(at BEP) Power 520 kW

r.p.m. 1800 r.p.m.
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2.2.1. Rotor

The mathematical rotor model consists of beams, lumped mass, and bearings. It includes
the e!ects of translational and rotatory inertia, gyroscopic moment, bending and shear
deformations. The governing equations of the rotor system are well established by many
authors [17}20]. The responses of a rotor are in#uenced strongly by bearing e!ects, and,
especially, instability may also occur by self-excited vibrations arising from the #uid "lm of
journal bearings [21]. But, in rolling element bearings, forces are purely elastic, i.e.,
produced by elastic contact deformation of the balls, of the races, and of the bearing housing
structure. An appropriate model for this type of bearing is a linear or non-linear spring with
no damping and no cross-coupling [22].

In this example, the ball bearings are used to support the rotor and their isotropic
properties are listed in Table 2. These bearing properties can, therefore, be directly included
into the rotor.

2.2.2. Dynamic properties of the support structure

The support structure consists of a pump casing, a pedestal, and a foundation. Its
dynamic properties are important in rotor vibrational analyses. In order to obtain the



TABLE 2

Rotor con,guration data

Material properties
Young's modulus E"19,200 MPa
Density o"7860 kg/m3

Rigid disk
Mass M

D
"53)90 kg

Polar mass moment of inertia I
P
"0)968 kg m2

Diametral mass moment of inertia I
D
"0)750 kg m2

Bearing sti!ness
Radial bearing k

yy
("k

zz
)"2)76]108 N/m

Thrust bearing k
yy
("k

zz
)"5)03]108 N/m

Figure 2. FRFs at the outboard bearing position (a) the driving FRF, (b) the transfer FRF: **, real; ) ) ) ) ) ),
imaginary.
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support dynamics analytically, it is necessary to perform the frequency response analysis.
Figure 2 shows the receptances of the support model. Where, the driving point FRF means
the co-ordinates of the response and the force are the same, whereas, the transfer FRF
means the response at the out-board bearing due to a harmonic force at the in-board
bearing. The matrix equation is as follows:

MX(u)N(s)"[H(u)](s) MF(u)N(s), (11)

where

MX(u)N(s)"A
X
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The supscript (s) indicates the support structure, and the subscripts ib and ob represent
the in-board and out-board bearing positions respectively. In this model, the e!ects of forces
perpendicular to each response are small, so the complex displacements can be
approximated as

X
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where X
oby

and X
obz

are the displacements neglecting the orthogonal e!ects in a symmetric
model, and &&m11 indicates whether we consider the transfer FRF or not. These FRFs will be
used to extract the spring}mass models, which have the same dynamic characteristics of the
support structure.

3. FORMULATION OF SYNTHESIS MODEL

3.1. IMPEDANCE COUPLING METHOD

At "rst, impedance coupling method is presented to verify later suggested methodology.
It makes use of the FRFs of each substructure, and they can be assembled into a matrix
form to generate the full system [23}25]. The basic conditions in this coupling process are
compatibility and equilibrium. So, the co-ordinates involved in the connection areas should
be identi"ed.

Let us consider the double suction centrifugal pump shown in Figure 1, where separate
models can be assumed as rotor and support with orders n

1
and n

2
respectively. The rotor is

a free condition and the support structure is constrained in a way depending upon the pump
installation. The bearing positions connecting the two bodies are denoted by &&c'', and the
remaining ones of each substructure are denoted by &&r''. Then, the equation of the rotor
becomes

A
MX(1)

r
N

MX(1)
c

NB"C
[H(1)

(rr)
]

[H(1)
(cr)

]

[H(1)
(rc)
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MF (1)

r
N
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c
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and that of the support structure is
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c
N
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r
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]
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MF (2)
r

NB . (14)

From equations (13) and (14), the equation of the assembled structure is formulated as

MX(A)N"[H(A)(u)] MF(A)N, (15)

where

[H(A)(u)]"

[Haa] [Hab] [Hac]
[Hba] [Hbb] [Hbc]
[Hca] [Hcb] [Hcc]

.

The derivation of equation (15), which is the relation between displacement MX(A)N and
force MF(A)N of the total structure, is the purpose of the impedance coupling process.

The conditions of displacement compatibility and equilibrium forces are as follows:

MX(1)
c

N"MX(2)
c

N"MX(A)b N, MF(1)
c

N#MF(2)
c

N"MF(A)b N . (16)

In addition to equation (16), the forces and displacements at non-coupled co-ordinates on
the assembled structure and substructures must be the same as the following forms:

MF(A)a N"MF(1)
r

N, MF(A)c N"MF(2)
r

N,
(17)

MX(A)a N"MX(1)
r

N, MX(A)c N"MX(2)
r

N.



IMPROVED ROTOR MODEL 575
So, the connection coordinates of the assembled structure are

MX(A)b N"[Hba]MF(A)a N#[Hbb]MF (A)
b

N#[Hbc] MF (A)c N

"[H(1)
cr

] MF(1)
r

N#[H(1)
cc

] MF(1)
c

N (18)

"[H(2)
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] MF(2)
r

N.

From equations (16)}(18), MF(2)
c

N can be expressed as

MF(2)
c
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]]~1 M[H(1)
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] MF(A)a N#[H(1)
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b
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Substituting equation (19) into the second row of equation (18), the following equation
will be obtained
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A comparison of coe$cients between equations (15) and (21) yields the following
relationships:
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] .

The same procedures can be applied to the "rst and last row in the assembled matrix, and
then the following equations will be obtained

[Haa]"[H(1)
rr

]![H(1)
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] [[H(1)
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[Hcc]"[H(2)
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]#[H(2)
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]]~1[H(2)
cr

] .

The right-hand sides of equations (22) and (23) only contain the matrix of the
substructure level. This means that H(A)

ij
of the assembled structure can be calculated
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directly from those of the rotor and the support structure. They can be expressed in a more
compact form as follows:

[Haa] [Hab] [Hac]
[Hba] [Hbb] [Hbc]
[Hca] [Hcb] [Hcc]
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3.2. IMPROVED ROTOR MODEL

3.2.1. Equivalent models of the support structure

Equivalent models can be regenerated, which have the same dynamic characteristics of
the support structure. Support properties will be used for the coupled FRFs (m"1) having
both the driving and transfer functions in equation (12). Let us consider a serially connected
spring}mass model with N degrees of freedom. Its mass and sti!ness matrices can be written
as

[M]
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m
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0
m

2
}
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, [K]
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Thus, the dynamic behaviors of this system are described as follows:

A
X

1
X

2
F

X
n
B"

H
11

H
12

0
H

21
H

22
}

0 H
nn
A
F
1

F
2
F
F
n
B . (26)

Equation (26) is an algebraic equation containing the system's frequency-dependent
functions. We need, however, only consider a driving FRF H

11
(u), which corresponds to the

receptance at any bearing position of the support structure. Its magnitude can be
represented by the inversion of the dynamic sti!ness matrix as
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TABLE 3

No. of coe.cients of the regenerated model

DOF b
0

b
1

b
2

b
3

b
4

b
5

b
6

a
0

a
1

a
2

a
3

a
4

a
5

a
6

a
7

2 2 1 1 31
3 3 4 1 1 65 1
4 4 10 6 1 1 10 15 5 1
5 5 20 21 8 1 1 15 35 28 9 1
6 6 35 56 36 101 1 21 70 84 45 11 1
7 7 56 126 120 55 12 1 1 28 126 210 165 66 13 1

TABLE 4

Properties of the equivalent support model

Support properties

Model > direction Z direction

m
1
"0)036 k

1
"6)24E5 m

1
"0)125 k

1
"1)40E6

m
2
"0)311 k

2
"6)23E5 m

2
"1)067 k

2
"7)21E6

d.o.f. m
3
"0)793 k

3
"2)07E6 m

3
"4)834 k

3
"1)79E7

Mass (kg), sti!ness (N/mm) m
4
"0)868 k

4
"1)23E6 m

4
"19)06 k

4
"7)98E7

m
5
"3)650 k

5
"9)64E6 m

5
"205)5 k

5
"9)90E8

m
6
"16)76 k

6
"4)68E7 m

6
"6264 k

6
"15)5E9
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Therefore, we can extract the mass and sti!ness elements by comparing the
corresponding coe$cients between equations (9) and (27). The regenerated dynamic
properties provide an equivalent support model at any speci"ed direction. These
procedures can be applied for all connection co-ordinates between rotor and support.

However, note that the coe$cients of equation (27) may be complicated according to the
order of the interested model, the detailed information on the number of coe$cients is listed
in Table 3. It is proper to adapt a one higher degree-of-freedom (d.o.f.) model than the
number of interested resonance of the structure and adequate numerically up to the 7-d.o.f.
model. In this example, 6-d.o.f. models are used for both horizontal and vertical directions
respectively, and the calculated results are listed in Table 4.



Figure 3. Comparison of the FRFs at the outboard bearing for the support structure and the regenerated
equivalent model. (a) H

YY
: 22, support FRF H

YY
; ) ) ) ) ), regenerated FRF H

YY
(without coupled e!ect). (b) H

ZZ
:

22, support FRF H
ZZ

; ) ) ) ) ), regenerated FRF H
ZZ

(without coupled e!ect).

Figure 4. Improved rotor model.

Figure 3 shows the comparison of the FRFs between the support structure and the
regenerated support model. It can be seen that the results are in good agreement.
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3.2.2. Improved rotor model

The classical reduction techniques are generally interested in the identi"cation of the
modal parameters (natural frequencies, damping factors, and mode shapes) from the
incomplete models. But, an improved rotor model is directly constructed by replacing the
support structure as the equivalent models as shown in Figure 4. They are connected with
the "nite element rotor through the bearing positions. The baseplate of this problem is
assumed to be rigid and the support structure to be rigidly restrained on the baseplate. The
numerical analysis of this improved rotor will be performed by the "nite element method.
Therefore, the vibration behaviors of the assembled structure will be achieved e$ciently
although the support models have only a simple representation of the structure.

4. NUMERICAL RESULTS AND DISCUSSION

4.1. MODEL VALIDATION

To illustrate the e$ciency and accuracy of the present methods, frequency response
analyses are performed at rest by using MSC/NASTRAN. Under a unit load harmonic



Figure 5. Comparison of the receptance at impeller center between the pump system and the impedance
coupling method. (a) H

YY
(u):22, full system FRF H

YY
; ) ) ) ) ), impedance coupled method FRF H

YY
. (b) H

ZZ
(u):

22, full system FRF H
ZZ

; ) ) ) ) ), impedance coupled method FRF H
ZZ

.

Figure 6. Comparison of the receptance at impeller center between the pump system and the improved rotor
model. (a) H

YY
(u):22, full system FRF H

YY
; ) ) ) ) ), equivalent shaft FRF H

YY
. (b) H

ZZ
(u):22, full system FRF

H
ZZ

; ) ) ) ) ), equivalent shaft method FRF H
ZZ

.
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excitation at the impeller center, the vibration responses are obtained at the same location
and compared to those of the system model.

Figure 5 shows the receptance magnitudes in horizontal and vertical directions
respectively. The results of the impedance coupling method agree well with those of the
pump system. The correspondent vibration magnitudes of the improved rotor together with
those of the system model are also depicted in Figure 6. They show that the response of the
vertical direction is not nearly a!ected by the support dynamics over a range from 0 to
300 Hz.

This fact can also be inferred from the FRFs of the support structure. The "rst resonance
of the vertical direction is far from that of the rotor model (99)2 Hz). So, it may be concluded
that the resonances of the rotor are reduced and additional natural frequencies may be
introduced due to the support dynamics, and the support e!ects are more signi"cant as the
resonances of the support structure are closer to those of the rotor model.

4.2. VIBRATION ANALYSIS OF THE ROTOR

The proposed techniques are applied for calculating the natural frequencies and the
unbalance responses of the rotor. The natural frequencies of the rotor system are commonly
called the critical speeds, at which vibration amplitude due to unbalance is a local
maximum, and they may be changed as the variation of the rotating speed.



Figure 7. Unbalance responses at impeller center for the impedance coupling method and the improved rotor
model. (a) Horizontal; (b) vertical directions: *z*, Equivalently supported rotor; ) ) ) z ) ) ) , impedance coupled
method.
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Figure 7 shows the synchronous whirl amplitudes by the presented techniques. Because
of the dynamic asymmetry of the support structure, the amplitudes of both directions are
unequal and the additional critical speeds are introduced in the horizontal direction. But,
they show good agreement with each other.

5. CONCLUSIONS

For more reliable results of rotordynamic analyses, the support e!ects need to be
necessarily considered in the rotor-bearing system. In this study, the improved rotor model
including the support e!ects is suggested. Its results agree well with the other analysis
method (impedance coupling method). So, the proposed method is regarded as a useful tool
for the vibration analysis of the rotor operating on the #exible structure. However, as
indicated previously, the advantage of the method is diminished by increasing the number
of d.o.f. in the regenerated support model, because the computation time required to "nd
the polynomial coe$cients increases.
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